En France, combien de sites industriels à risque sont situés en forêt ?

Le 4 mars 2022, un feu de forêt apparu dans les collines dominant la ville d’Uljin en Corée du Sud a été stoppé à quelques centaines de mètres d’une des plus grandes centrales nucléaires de la planète. Pendant l’été 2021, c’est une centrale à charbon située dans le sud de la Turquie qui avait été sauvée in-extremis d’un violent incendie.

Pour un site industriel, être situé à proximité d’une forêt représente un risque. Surtout avec le changement climatique : l’augmentation de la température donc de l’évapotranspiration et la modification des précipitations contribuent à fragiliser la végétation et à aggraver les incendies.

Mais à quel point est-il fréquent que des sites industriels dangereux soient situés en forêt ? C’est ce que nous allons déterminer dans cette nouvelle démonstration du ClimateLab.

Données sur les installations à risque

La liste des installation classées pour la protection de l’environnement est disponible via le site Georisques du Ministère de l’écologie. Elle contient la localisation de chaque installation ainsi que de nombreuses informations : nom, adresse, activité, régime de classement ICPE, classement Seveso, etc.

Au total, un peu plus de 100 000 sites sont classés, il y a des raffineries, des papeteries, des dépôts de produits chimiques mais aussi des entrepôts de services municipaux ou des supermarchés... Beaucoup ne nous intéressent pas, nous n’allons garder que les sites qui présentent un risque majeur, c’est-à-dire les sites Seveso seuil haut.

Par simplicité, nous allons aussi exclure les sites situés dans des départements d’outre-mer.

Données d’occupation des sols

Pour connaitre le type d’environnement et de végétation présent autour de chacun de ces sites, nous allons utiliser la base de données européenne Corine land Cover.

Basée sur des observations satellites, ces données ont une résolution spatiale de 100 m. Chaque pixel est classé dans une catégorie parmi 44, par exemple “tissu urbain continu”, “landes et broussailles”, “plages, dunes et sables” et bien sûr forêts.

Ces données sont disponibles sous plusieurs format, nous utiliserons la version .tif que l’on peut ouvrir avec Xarray (comme nous l’avons vu dans un tuto précédent). Pour limiter le volume de données à garder en mémoire, nous allons commencer par sélectionner grossièrement la zone qui nous intéresse : la France métropolitaine.

L’affichage permet de vérifier que l’on ne s’est pas trompé :

Définir la zone d’intérêt autour de chaque site

Les géométries fournies avec le geodataframe des sites Seveso ne sont en réalité que des points. La zone qui nous intéresse est plus étendue : nous allons donc les remplacer par des polygones quasi-circulaires de rayon 1000 mètres centrés sur chaque site.

Le système de coordonnées du geodataframe est le WGS84. Pour pouvoir exprimer le rayon de chaque cercle en mètres nous allons convertir vers une projections azimutale locale, créer le polygone puis reconvertir en WGS84.

Par exemple pour la première ligne :

On peut créer rapidement une carte folium pour s’assurer que tout va bien :

Le résultat correspond bien à ce qui est souhaité :

Il ne reste donc plus qu’à faire la même chose pour chaque point et à remplacer les géométries contenues dans le geodataframe :

Croisement des deux jeux de données

Pour chaque site Seveso, nous avons créé un polygone définissant la zone qui nous intéresse. L’objectif est maintenant d’extraire les données Corine dans ce polygone et de voir si on y trouve des forêts.

Comme les données Corine utilise une projection différente (ETRS89, une projection azimutale équivalente de Lambert), il faut avant tout convertir le geodataframe vers le crs correspondant :

Commençons encore une fois par travailler sur le premier site de la liste. Nous allons d’abord récupérer les coordonnées maximales et minimales du polygone fin de ne garder que la partie du datarray qui nous intéresse :

Ensuite, nous allons masquer les points du datarray restant qui se trouvent en dehors du polygone (la fonction utilisée est inspirée d’un tuto précédent) :

On obtient le résultat suivant :

Dans les données Corine, les forêts correspondent aux codes 23, 24 et 25, respectivement forêts de feuillus, de conifères et mixtes. Y en a-t-il autour de ce site ? On peut le calculer de la façon suivante :

Pas l’ombre d’une forêt ici. Selon ces données, l’environnement dans un rayon de 1 kilomètre autour du site est composé à 56% de zone portuaire, à 18% de tissu urbain discontinu, 17% de voies d’eau, 4% de plans d’eau et 4% de terres arables non-irriguées. Cela ressemble effectivement à une description de l’avant-port de Strasbourg où se trouve ce site :

Synthèse et résultats

Il ne reste plus qu’à reproduire ce calcul pour tout les sites :

Et voilà notre résultat : sur 616 sites industriels classés Seveso seuil haut, 276 sont situés à proximité d’une forêt. L’environnement est composé à 10% ou plus de forêt pour 157 sites et à 20% ou plus pour 90.

A propos : Callendar est une start-up spécialisée dans le développement de solutions innovantes pour l’évaluation des risques climatiques. Le ClimateLab permet de mobiliser rapidement nos outils et notre expertise pour répondre à une question précise.

--

--

--

Start-up spécialisée dans l’exploitation des données climatiques, Callendar vous aide à prendre les bonnes décisions partout où le climat actuel et futur compte

Love podcasts or audiobooks? Learn on the go with our new app.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
Callendar

Callendar

Start-up spécialisée dans l’exploitation des données climatiques, Callendar vous aide à prendre les bonnes décisions partout où le climat actuel et futur compte

More from Medium

Introduction to Blockchain Development: What You Need to Know

CONTENT WARNING: Image of Korean Massacre and Discussion about Japanese Colonialism

The Basics of Sales Compensation: Base, Commission, and Target

Agile Quotes (from Twitter), First Set